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Projection Operator Approach to the Thermodynamic 
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An analytical perturbative treatment of characteristic exponents describing the 
fluctuations of temporal coarse-grained quantities in the context of nonlinear 
dynamical systems is proposed. It is based on the analysis of the resolvent of the 
corresponding transfer operator by a projection operator method similar to 
those used in statistical mechanics. Two different approximation schemes are 
presented and tested for the case of an exactly solvable but nontrivial model 
system. 

KEY W O R D S :  Thermodynamic formalism; transfer operator; projection 
operator technique. 

1. I N T R O D U C T I O N  

The the rmodynamic  formalism constitutes a p rogram for analyzing the 
complicated behavior  of nonlinear  dynamical  systems. (t'2) The main 
quant i ty  that  contains a great deal of  information about  the dynamics is 
given by the characteristic exponent  (3) 

~"(q)  := lim - l n  exp q ~ u (T i (x  (1) 
n ~ o v  F/ i = 0  

where to be definite we restrict the discussion to discrete dynamical  systems 
xn+l  = T(xn). The expectation value in Eq. (1), ( . . . ) ,  is meant  with respect 
to some distribution of initial points x which is usually assumed to be the 
(physical) invariant  distribution (SRB measure in mathematical  terms). 
The characteristic quant i ty  depends on the function u(x). The case that  
u(x)  is given by the local expansion rate is, by Bowen's theorem, {2) of 
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special importance and is frequently discussed in the literature. (41 In that 
case the quantity (1) is called the topological pressure. One possibility for 
the computation of the characteristic exponent is based on the introduction 
of the transfer operator (5~ 

(~  qh)(x) := f 6(x- T(y)) exp[qu(y)] h(y) dy (2) 

Its largest eigenvalue 2q is connected to the characteristic exponent via the 
relation In 2q = Cl)U(q). It is the aim of this paper to apply the ideas of the 
projection operator technique of statistical mechanics (6'7) for an analytical 
perturbative calculation of the characteristic exponent. 

In order to define a projection operator on the space of integrable 
functions, its dual space has to be introduced in a natural way. Referring 
back to the representation of the SRB measure proposed by Bowen, (2~ 
it is obvious to consider the space of measures as the dual space and to 
introduce the bilinear expression 

(ulh) :=f hdu (3) 

Then the SRB measure #SRB admits the representation d~SRB = h, dr,, 
where h ,  and v,  denote the eigenelements of the Ruelle-Frobenius-Perron 
operator ~ and its formal adjoint 2 s corresponding to the largest real 
eigenvalue. In systems admitting an attractor this eigenvalue equals 1, and 
for the special case of one-dimensional maps, v,  coincides with the 
Lebesgue measure, so that the SRB measure is determined by the invariant 
distribution h , .  By this theorem the dual space structure and the definition 
(3) are closely related to the dynamical systems under consideration. 

In general higher-dimensional systems no relation between affq and s 
is known, to my knowledge. Although such a relation is not necessary for 
the formal investigations made in this article, it is important for the 
construction of an appropriate projection operator. For this reason I will 
concentrate on one-dimensional systems 3 and expanding maps, (8) where 
the relation ~ q = O = ~  is well established. Also, the function space on 
which the transfer operator is defined may depend on the properties of the 
dynamical system. In the case of one-dimensional maps this space is given 
by piecewise continuous functions. 4 

2 With respect to the bilinear expression (3). 
3To be precise, an expansive condition such as 3N, u I~=olT'(Tl~ has to be 

imposed. 
4 Finite jumps may occur on the countable set of points at which T' is discontinuous and its 

forward iterates. 
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With these preliminaries, I will show in the next section how a projec- 
tion operator formalism for the resolvent of the transfer operator (2) 
according to the lines of the Mori projection operator technique (7) can be 
constructed. Section 3 is devoted to the outline of an approximation 
scheme which is closely connected to the continued fraction expansion for 
correlation functions in equilibrium statistical mechanics (9) and yields a 
result that was obtained earlier in a phenomenological way. (~~ Section 4 
contains an alternative approximation scheme which relies on a perturba- 
tion expansion of the memory kernel. Section 5 is devoted to the discussion 
of simple exactly solvable model system from the viewpoint of these 
perturbation expansions. Finally, the results are summarized. 

2. PROJECTION O P E R A T O R  T E C H N I Q U E  FOR THE 
R E S O L V E N T  

For the determination of the eigenvalues of the transfer operator, the 
discussion of the resolvent (z - Yt~ - ~ is a convenient tool. Its singularities 
define the spectrum of the transfer operator. With the help of the projection 
operator formalism, this resolvent can be divided into several parts, which 
allows for a perturbative treatment. Consider a suitably chosen set of 
relevant functions {g~} and measures {v~}, c~,/?= 1 ..... N, and define a 
"projection operator" 

:= ~ Ig~)(X-1)~a(v~[, Z~ := (val g~) (4) 

on the space of integrable functions which admits the usual relations 

~2=~, ~g =g~, ~*va=v~ (5) 

Due to the fact that Eq. (3) does not represent a scalar product on some 
Hilbert space, the regularity of the matrix ~ is not obvious. This property 
is based on an appropriate choice of the sets {g=} and {va}. 

Applying the well-known operator identity (ref. 12, p. 367) 

~ [ z -  ~Xeq~  - ~Xeq(Z - ~ q ~ ) - '  ~ q ~ ]  ~ ( Z - ~ q ) - l ~ =  ~,  

_ ~ : = 1 - ~  (6) 

to the resolvent (v~[ ( z - ~ f q ) - I  Ig~), one gets with the help of Eqs. (4) and 
(5) the final result 

(val (Z- ~ q)-l lg=)=(zl _ S _  F(z) Z)a ~ (7) 
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where the frequency matrix ~ and the memory kernel F(z) are given by 

7 

1 

y 

(8) 

As mentioned above, the poles of the resolvent (7) yield the eigenvalues 
of the transfer operator (2). Inspecting Eq. (7), one recognizes that this 
problem has been reduced to the computation of the frequency and 
memory matrix and solving the algebraic equation d e t ( z l -  ~ - F ( z ) ) =  0. 
We show in the next sections that expressions (8) are better adapted to the 
application of analytical perturbation schemes than the original resolvent. 

3. CONTINUED FRACTION EXPANSION 

As one is mainly interested in the characteristic exponent (1) if the 
average is taken with respect to the natural invariant measure, it is of 
interest to choose the sets {g~} and {v~} in such a way that they contain 
the SRB measure and investigate the poles of the resolvent 

1 
(V,l z _  ~-----~ lh,) (9) 

q 

For this reason let us take the smallest sets {gl} = {h,} and {1J1} = {~,}, 
7, fl= 1, which fit in with these constraints. Although Eq. (7) yields an 
exact expression for the resolvent under consideration, it is a hard task to 
compute the memory kernel F(z) in general. Let us therefore go back to an 
idea of Mori (9) and incorporate the higher order functions (~fq)nh, and 
measures (gf'~qt)nv, (n-- 1,..., N) into the relevant set. By this procedure a 
continued fraction expansion for the resolvent (9) can be constructed. 

To be definite, take as the relevant sets those which are built up by 
(Yfq)nh, and (Ygqt)"v, (n = 0  ..... N): 

gl := h, 

P 1 :~- Y ,  

gi+l : =  J~l~ -~k : =  1 

v~+ 1 := ~*v,, ~ := 1 

I gD(v~] 
(vk [ gk)'  

Ivk)(g~[ 
(vkl gk)'  

i=  1 ..... N--  1 (10) 

i=  1,..., N--  1 
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To simplify the considerations, we have chosen orthogonalized sets. In 
writing down Eq.(10) it has been presupposed that the relations, 
(vii gi) 4: 0, i = 1,..., N hold. For a remark on the opposite case we refer to 
Appendix B. After a short computation (Appendix A) we obtain the follow- 
ing results for the frequency matrix: 

I t=  

( 11 10 ' 
~"~21 -Q22 " " - 

i ff~32 " �9 , 1 

�9 " " . ~ " ~ N  I , N  1 

\ " ' "  O ff2N, N -  1 ~'-2NN 

~'~ii : :  
( v , l ~ q t g , )  .Qi+l,i:=(vi+llgi+l) 

(vii gi) ' (vel g,) 
(11) 

and the memory kernel 

r ( z )  = 

1 
ruN(Z) := (VNI ~ q~ z -  ~ q~ ~ q I gev) (12) 

Inserlfing these expressions into the general equation (7), one gets (ref. 12, 
p. 230) for the matrix element (9) the continued fraction expression 

1 
(Vl[ Z _ _ y f ~  [ g l ) - -  

q Z - - ~ I  1 
~Q21 

'~Q32 Z --  ff222 

Z - -  ~'~N LN--1 
ff2 N, N--1 

Z - -  ~ N N  - -  I-']vN(Z) 

(13) 

This expansion is mainly determined by the elements of the frequency 
matrix (11), which means by the moments of the transfer operator, which 
can be computed easily when the SRB measure is known�9 It coincides with 
the expansion proposed by Fujisaka and Inoue (l~ (Appendix B). 

822/67/1-2-18 
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4. PERTURBATION EXPANSION OF THE M E M O R Y  KERNEL 

Assume that the transfer operator can be devided into a zeroth-order 
o which allows for an explict treatment and a small perturbation part ~ q  

Jfq~. A perturbative treatment of the eigenvalue problem of the transfer 
operator along the lines of the Schr6dinger perturbation theory used in 
quantum mechanics 5 is of limited value in the vicinity of q values qo at 
which the operator (2) admits degenerate eigenvalues. Due to small 
denominators, the radius of convergence of such an expansion decreases as 
] q -  q0]- It is true that around this critical point an expansion in both small 
quantities q - q 0  and g/fq~ is possible, but no expression uniformly valid in 
q can be obtained by this perturbation scheme in any finite order. 

In contrast, it is known that a standard perturbation expansion of the 
quantities (8) yields a uniformly valid expansion of the resolvent (7) if 
the projection operator is chosen appropriately. (6'12) In order to perform 
the formal expansion, let us choose the relevant sets in such a way that the 
projection operator (4) commutes with the unperturbed part of the transfer 
operator 

q=  Oq+ lq, o ' .)ffq~ (14) 

The last property can be achieved if one chooses some eigenelements of the 
zeroth order part as the relevant sets. As we are interested in the behavior 
of the largest eigenvalue, the eigenelements corresponding to the upper part 
of the spectrum seem to be the appropriate choice. By virtue of Eq. (14), 
the definitions (8) read 

1 

"t 7 (15) 
1 

F~(z) = Z (v~l ~ 1 ~  z - ~(~Oq + ~ 1 ) ~  r  lq ig~)(z-~)~ 
? 

In the lowest nonvanishing order the perturbation in the denominator of 
the memory kernel can be neglected and one obtains with the help of 
Eq. (14) the second-order result 

1 
F(fl 2)(Z) = Z (Y fl] ~ l q ~  z _  j ~ , , ~ , ~ l  q ]g~)(X-l)r~ (16) 

? q 

Inspecting the expression (16), one recognizes that it contains the projected 
resolvent , ~ ( z - W ~  instead of the full resolvent of zeroth-order 
(z-~r which governs the ordinary perturbation expansion mentioned 
at the beginning. This difference is crucial and the reason that the expres- 

s For the perturbation series of non-Hermitian operators see, e.g., ref. 11. 
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sion (16) is valid beyond the Schr6dinger perturbation theory provided 
that the projection operator is chosen appropriately. To make this state- 
ment explicit, let me mention that z takes values in the vicinity of the 
largest eigenvalue. If ~ o  allows for eigenvalues which become arbitrarily 
close to the largest eigenvalue as the parameter q varies, the expression 
( z -~qO) - i  becomes singular even on a subspace which does not contain 
the eigenvector corresponding to the largest eigenvalue. As a consequence, 
the radius of convergence of the Schr6dinger perturbation expansion tends 
to zero. On the other hand, the expression ~ ( z - . ~ 0 ) - 1 ~  remains regular 
if the eigenelements corresponding to the resonant eigenvalues are incor- 
porated in the projection operator (4). Therefore the expansion presented 
above is uniformly valid in q and the expression (16) is of second order in 
the perturbation. Hence one can hope that the frequency matrix determines 
the main behavior according to Eq. (7). 

5. D I S C U S S I O N  OF AN E X A M P L E  

For the discussion of the approximation schemes presented in the two 
preceding sections a simple exactly solvable model system that contains 
nontrivial features is investigated in this section from the viewpoint of the 
projection operator formalism. First I briefly review the properties of the 
model system. For a detailed discussion see ref. 13. 

Consider the following one-dimensional map: 

(Tx, x~ I - a ,  a] 

T~(x) = ] - 7 ( x -  2a), xe(a, oo), 7 : = 2 + e  (17) 

[ , -7(x + 2a), x~(-oo, a) 

which undergoes a symmetry-breaking chaos transition in the limit el0.  
The characteristic exponent corresponding to the function 

1, x > 0  
u(x)= --1, x < 0  (18) 

shows a phase transition at q = 0  in the limit e J, 0. This transition is 
governed by the degeneracy of the two largest eigenvalues exp(+q) of the 
transfer operator (2). At the bifurcation point e = 0  the map T~= 0 admits 
a simple Markov partition consisting of six intervals, 

I~ := [-0, a], I o := I--a,  0] 

I~ := I-a, 2a], I~- := [--2a, - a ]  (19) 

I2 ~ := [2a, 3a], I~-:= [--3a, - 2 a ]  
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On this partition the matrix representation of the transfer operator reads 

l 0 0 0 0 0 01~ / 
0 exp(-  q) exp(-  q) 0 0 exp(q) \  

/ 
1 0 exp(-q)  exp(-q)  0 0 ex q) 
2 exp(-q)  0 0 exp(q) exp(q) 

exp(-q)  0 0 exp(q) exp(q) 
0 0 0 0 0 

(20) 

The right and left eigenvectors corresponding to the eigenvalues exp(_+q) 
yield the following eigenfunctions and eigenmeasures of the transfer 
operator and its adjoint: 

(1) _ 2q - exp(q) 

h ~ ( x )  = Z,~ ~,1 ~ (x)  

dv(1)= v~(x) dx, 

(2) _ •q -- exp(--q) 

h ( 2 ) ( x ) ~ . Z 1 0  voIl (X) 

dv{2~ = v~2~(x) dx, 

1 1 
v ()(x) = ~a [)~I~ u ,?(x) + exp(-2q) )~/f(x)] 

v(2)(x) = 1 [Zz0 ~ zf (x) + exp(2q) )~i; (x) ] 

(21) 

where )~z(x) denotes the characteristic function of the interval /. The 
characteristic exponent (1) shows a typical scaling behavior in the vicinity 
of the bifurcation point. Due to this fact, the investigation of the parameter 
region 0 < e ~  1 yields a suitable test for the approximation schemes 
presented above. 

Continued Fraction Expansion. For writing down the expansion 
(13) the matrix elements (11) have to be computed. We will see that a 
restriction to second-order terms suffices. From Eqs. (11) and (10) one gets 
the relations 

~(~11 ~-- HI 

•21 =- H2 -- H2 

ff~22ff~21 = H 3 --2H1H2 + H31 

~32 ~ 1  = {H. --/4~)(H2 -- Hf) -- (/43 -- Hx/-/2) 2 

(22) 
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where 

He := (v,[ (jgq)i Ih,) (23) 

denote the moments of the transfer operator with respect to the SRB 
measure. For the special model system under consideration these expres- 
sions can be computed easily even without having explicit knowledge of the 
invariant distribution (Appendix C). Finally one gets for the matrix 
elements (22) 

/211 = cosh(q) 

f22t = (1 - 4 6 )  sinhZ(q) 

1 - 86  ( 2 4 )  
s - 1 - 4 6  cosh(q) 

-- 1662 3262(1 -- 26 
Q32 = (1_46)2 ~ 7  ) sinh2(q) 

Here 6 denotes the SRB measure of the interval (2a, ~) .  It has the 
meaning of the transition rate from the region x > 0 to the region x < 0 and 
is a small quantity of order e (see Appendix C). As the matrix element (244) 
is an order of magnitude smaller than the other ones, a truncation of the 
continued fraction after the second term is justified in the limit of small e. 
Then the resolvent reads 

1 1 
(v,l qZ-~-----~ Igl) -~ (25) 

z - t 2 , -  f221/(z- f222) 

which was called a two-pole approximation in ref, 10. The singularities of 
this expression which determine the eigenvalues of the transfer operator 
can be calculated easily and one gets the correct scaling behavior for the 
eigenvalues in the vicinity of the phase transition point (13) 

4& 4~ (1/2) = : %  I//(1/2) I//(1/2) ~-~ - - I  -1- (1 -{- ha2) 1/2 (26) q =: ~ x, In 2q Z rq rq - -  

Perturbation Expansion. For the perturbative treatment we take the 
transfer operator corresponding to the map T~=o as the unperturbed part. 
Referring back to Section 4, we build up the relevant sets with the 
eigenelements (21) which belong to a part of the spectrum of g/go that is 
well separated from the remaining one.(13)With Eqs. (15) and (21) a simple 
straightforward calculation yields the frequency matrix 
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f f  2 ~t '~ l l  ~-- Y(I)(x) 6(X -- T,(y)) h ( 1 ) ( y )  dy dx = - exp(q) 
7 

ff~12 ~- ('('I[ V(1)(x) ( ~ ( X  - -  T,(y)) h(2)(y) dy dx = e_ exp( - 3q) 
d d  7 

f22~ = tell v(2)(x ) 6(x - T~(y)) h(~(y) dy dx = e__ exp(3q) 
dd  7 

2 
f222 = t[  r 6 ( x -  T~(y) ) h(2)(y) dy dx = -  e x p ( - q )  dd 7 

(27) 

Referring to the discussion in Section 4, it seems reasonable that the 
memory matrix is regular and of second order in the vicinity of the phase 
transition point q = 0, z = i. It is indeed possible to derive the following 
estimate: 

r ( 2 ) ( z ) = O ( c  2 ~), if Izl > e x p ( I q j - t / l n 2 ) ,  t />Oarbitrary (28) 

I devote Appendix D to the tedious computation. Inspecting Eq. (7), one 
sees that the poles of the resolvent are determined by the eigenvalues of the 
frequency matrix 

(29) 
~(0) + ~(1) = ((1 ; �89 exp(q) �89 exp( -3q)  

exp(3q) (1 - �89 e x p ( - q ) J  

up to the lowest nonvanishing order in the small parameter e. Introducing 
again the abbreviations q = ~ce/2 and in )~q = t)qe/2, one recovers the scaling 
behavior (26). 

6. S U M M A R Y  

Based on the projection operator approach used in statistical 
mechanics, the resolvent of the transfer operator has been investigated. The 
computation of the characteristic exponent has been reduced to the deter- 
mination of the frequency and memory matrix (8). For the construction of 
a projection operator we have referred back to a dual space structure 
which is naturally connected to the dynamics generated by T~. Two 
approximation schemes have been proposed, which on one hand allow for 
an explicit evaluation of these quantities and on the other hand define the 
relevant functions and measures which determine the projection operator. 
The first approach starts from the minimal set containing the SRB measure 
and extends it in a systematic way. By this procedure a continued fraction 
expansion of the resolvent has been obtained which involves the moments 
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of the transfer operator. The second one is based on a perturbative 
approach starting from an unperturbed part of the transfer operator. The 
relevant sets are determined by the upper part of the spectrum of this 
operator, which should be separated from the remainder. Also in this case 
only simple matrix elements of the transfer operator have to be evaluated. 
Both schemes have been applied to a simple model system exhibiting a 
symmetry-breaking bifurcation. The correct behavior in the vicinity of the 
phase transition point was reproduced. Additionally both approaches lead 
to a systematic expansion in the relevant small parameter. From these 
results we draw the conclusion that the proposed formalism may be helpful 
for a perturbative treatment of more complicated dynamical systems. 

A P P E N D I X  A 

From the definition (10) we get the orthogonality relations 

Zo-=(v~l gj)= 6~(vel gi) (A1) 

From the same equation we obtain that .~q gi (~q*Vi) can be represented 
by a sum of the elements {gl ..... g,+l} ({vl ..... vi+l}). Referring to the 
definition (81) and to Eq. (A1), we see that the nonvanishing elements of 
the frequency matrix read 

" " (v ,+ , l  ~ Ig,) (vi , ] ~ q  Ig~) O~z=(vilYgqlge) Qi+ t,e = 
f2i " i= (vii g~) ' (vii gi) ' (vii g,) 

(A2) 

Multiplying Eq. (103) with (vi+ iI and Eq. (104) with ]gi+ 1), we obtain with 
the help of the orthogonality relation (A1) 

u 

(vi+ l l g~+ l) = ( ~  q*Vil gi+ l) 
(A3) 

Combining Eqs. (A2) and (A3) yields Eq. (11). 
From the remark made at the beginning of the Appendix, we get 

immediately 

~ q  g, = 0, ~*Yt~*v~ = 0, i=  1,..., N -  1 (A4) 

From this relation the result (12) is obvious. 
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A P P E N D I X  B 

To show the identity to the continued fraction expansion proposed in 
Ref. 10, we introduce the resolvent matrix 

Rn=(z) :=(vBI ( z - ~ )  ~lg=) (B1) 

Then Eq. (7) yields 

6il(v I g~)= ([zl  - ~ - F ( z ) ]  R(z))il (B2) 

Using the expressions (11) and (12) and the abbreviation 

~[ti(Z ) .--  R i +  1'1(z) (B3) 
Ril(z) 

we obtain for Eq. (B2) 

(Vl t g l ) =  I - Z - - ~ 1 1 -  ~tr/I(Z)] R l l ( Z )  

0 = -(2~.g_ ~ + [ z -  (2ig- Te(z)] T~ ~, i = 2 ..... N--  1 (B4) 

0 = --~N,N 1 "~- FZ--f~NN--FNN(Z)I ~'IN--1 

To get the formal equivalence, one has to introduce the notation 

1 
P : = - ,  [P]0 :=zRla(Z), [#3i :=zTi(z), i =  1 ..... N -  1 (B5) 

2 

Then Eqs. (B41,2) become 

(v~ I g l )  = (1 - #~11  -~ # 2 [ - # ] 1 ) [ # ] 0  
(B6) 

E2~,~_ ~ = (1 - ,u.Q,~- #2[-#]~)[-#]~_, 

which is identical to Eq. (10) of ref. 10. 
The formal continued fraction expansion stops if at some stage the 

expression (vii g~) vanishes. Let us therefore assume that the construction 
of Section 3 holds up to the order N and denote the relevant sets by 
(g~ ..... gg} and {v~,..., VN}. Furthermore, the construction should fail at the 
next level, which means 

N N 
gc := H ,.,~k~CtOqgN,u Vc := l~ ~k~CCqVN,~+ . . . .  * (Vcl go)=0  (B7) 

k = l  k = l  

There is no unique way to circumvent this difficulty. One possible way is 
to omit the expressions (B7) from the relevant set and incorporate in the 
next step the following function and measure: 

N N 

g N + l  : :  H "~:~'~qgc, ])N+I : =  H ~k ty~z~ut'q Vc (B8) 
k = l  k 1 
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provided (1~N+I[gN+I)~O. Also, with these sets it is possible to write 
down a continued fraction expansion and extend it to higher orders. But as 
the relation (A4) ceases to be valid for i =  N, this expansion does not share 
the simple structure of Eq. (13). We therefore omit the explicit expressions. 

A P P E N D I X  C 

Consider the sets 

J+l : :  {xlx>O}, J -1  := {X!X<O} 

S~0....,~k , :=  {xl T/(x)~J,j, O<~j<~k- 1) 

Then the moments (23) of the transfer operator read 

H k = 

(cl) 

exp lq k~l u( T[(x) )] h,(x) dx 
j = 0  

exp q ij h,(x) dx 
zO,.-.,ik 1 j = O  ~O,...,ik-I 

exp q ii l%,...,k_~ (C2) 
i0,..., ik - 1 

v, coincides with the Lebesgue measure and the 
for the SRB measure of the sets (C12) have been used. 

Here the fact that 
abbreviation ].Lio,...,i k 1 

To compute the last mentioned quantity, we note that 

U Jio,...,ik = Jio,-.,ik t 
i~ (C3) 

J,o,...,i, = T j  l(Jil,...,,,), k >>. 1 
io 

so that the T~ invariance of the SRB measure leads to 

E ].Zio,...,i k : #io,. . . , ik_l 

ik (C4) 

E ~io,'",ik ~- # i l , ' " , ik '  k >1 1 
io 

By the symmetry of the map, we have 

(C5) ,u+ = # - 1  

If e is sufficiently small, every trajectory leaving the interval J+l (J-1) stays 
in the other interval J -1  (J+l)  for a sufficiently long time. This means 
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0 = ~ / + 1  - - 1 , + l ~ / ~ l , + t , - - t  

O ~ # + l ,  1, + 1, -.~ I ~-~" # - - 1 ,  + 1, - 1, -- 1 
(e6) 

0 ~- # ~.~, +1 ,  -- 1, + /  ~ ' # - - I ,  --1, + 1 , - - 1  

0 ~" ~ - - 1 , +  1 , + 1 , - -  1 ~" ~ ' +  1, -- i ,  -- 1, + / 

The remaining quantities can be determined uniquely from Eqs. (C4) in the 
case k = 1, 2, 3: 

:= /~+l , - t  =/1-1, +1 

} - - 6 = ~ + , , + ~ = # _ 1 , _ 1  

d =/~+1,_1,_1 =#-~ ,+ j ,+ j  =#+J,+~,-J  =#-~ , -~ ,  +~ 

t 
5 -  26 =#+1, +l, +~ = #-1,-~, ~ (C7) 

0 =#+1,+1,~1,-1 =# -1 ,~ ,+1 ,+1  

0 = ] 2 +  1, +1 ,  + 1 , _  1 "~- ~ - -  1 , - - l , - - 1 ,  + ]  

c~ =#+1 , -z , -1 , -1  =#-1,+t ,+1,+1 

� 89  =/~+1,+1,+1,+1 = # - L , - 1 , - : , - 1  

Here the quantity defined in Eq. (C7~) measures those points which leave 
one of the intervals (CI~) and can be identified with the escape rate. 
Referring to the tentlike shape of the mapping (17), one can estimated it 
as fi ~ ea/(4a}= e/4. 6 Ir~serting Eqs. (C5)--(C7) into Eq. (C2), we obtain 

H1 = cosh(q) 

H~ = cosh(2q) + 26[ 1 - eosh{2q)] 
(cs) 

Ha = cosh(3q) + 4~i[cosh(q) - cosh(3q)] 

tI4 = cosh(4q) + 26[ - 3 cosh(4q) + 2 cosh(2q) + 1] 

With Eq. (22}, one gets the result (24). 

A P P E N D I X  D 

The matrix element Flu(z) will be evaluated explicitly. The other 
elements can be calculated in the same way. 

From the definition (2) and {212) we obtain 

7 

The exact expression reads 6 ~- ~/(27). 
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so that by the definition (4) of the projection operator the relation 

(g~lqh~))(x) (~;r = 2 = -- eq~z[2a ,  Ta](x)  (D2) 
7 

holds. 
If v is a measure with density v(x), then by the definition of the 

adjoint operator X,~q t the measure Jq~qtV is determined by the density 
exp[qu(x)] v(T~(x)). This result follows by a straightforward computation. 
Using this relation, one gets 

C q e 3q 

(~*v~'~)(x)  = ~a [v~l~(x) - z,~+(x)] + ~ - a  z,,-(x) (D3) 

where 

K+ := ~aa 2a--~aa g := 
' 2a' 2a 

denote those parts of the intervals I~- w I f  and I o w I~- that are mapped 
by T~ on the intervals I f  and 12. From Eq. (D3) we obtain immediately 

1 (;~*~;r lqtV(1))(X) = ~ ~?Ee-3qZK- (X )  --  eqzK+(x ) ]  (D5) 

With Eqs. (D2) and (D5), Eq.(16) yields for the element under 
consideration 

1 ~  1 r l  o~2  
r, ,(z) = T ~L o 7 J ~ [e-~z~-(x)- e~z~+(x)] ~(#G) ~ e~zE~o,~o~(x) a~ 

(D6) 

For the following considerations we will assume that for a sufficiently large 
natural number N the relation e = 2-N+1 holds. This assumption restricts 
the e values to a countable sequence. But as this sequence tends to 0, it is 
reasonable to assume that it contains the main behavior for small e values. 
We then obtain 

eq(  7 
((  q) ~[2a, ;~a]) (X)=' -2  

0 k ( ( ~ q )  ZE20,~a~)(X) ~ Z'o ~'c(X), 

1 
Z{_2k~,o](X), 1 <~k<~N 

k > N  
(D7) 

where the first relation follows by induction and the second from the 
requirement given above. With these relations the integrand in Eq. (D6) 
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can be evaluated. One recognizes that in the case k > N the summands are 
eliminated by the projection operator. For the remaining part we get, by 
using the definition (4), 

e q 
/ ~ l l ( Z )  = - -  f Ee 3q)~ K ( x )  - -  e q z K + ( X ) ]  ~.Z[2<.~j(x) dx zya 

leg? + z?a-- k~'l= e2q \ 2z / f[e 3 q Z K - ( X  ) - -  eqZx+(X)] -~ZE-z*~a,0](x) dx 

eq ( 82~ )_.k eq N-2e2q 2+e ) - - q  (e q) k( e2a 3! (D8) 
z~a zTak Z,= \ 2z ] \ 

Finally we obtain 

eZl~2(e-q~ k 2 N + I  

ff'll(Z)= --'))~Tk=O k Z / ' ~:~- (D9) 

The other matrix elements can be calculated in 
to the result 

r 12( z ) = 7 ~ --~ z ~2 o = 

82 e2q N - 2  e q k 

z 5 o ( z )  

F = ( z )  = - ~-5 z k ~ o 

a similar fashion, leading 

Using the estimate 

k=O 

(D10) 

k = 0  

e + q  k 

k=O 

2--~(N-- 1) 

(D l l )  

one recognizes that the matrix elements (D9) and (D10) are of O(a 2 ") if 
the series on the right-hand side of Eq. (D l l )  converges. 
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